📖
C++
  • 1. C++ Basics
    • 1.1 Input, Output, and Program Structure
      • 1.1.1 Welcome to Data Structures in C++
      • 1.1.2 Hello World
      • 1.1.3 Input and Output
      • 1.1.4 getline and cin
      • 1.1.5 Program Structure
    • 1.2 Basic Data Types
      • 1.2.1 Basic Data Types
        • 1.2.1.1 Differences between C++ and Java Data Types and Variables
      • 1.2.2 Strings and Characters
      • 1.2.3 Numbers
      • 1.2.4 Booleans
    • 1.3 Conditional Statements
      • 1.3.1 Conditional Statements
      • 1.3.2 Basic If/Else Statements
      • 1.3.3 Comparing Strings
      • 1.3.4 Logical Operators
    • 1.4 Loops
      • 1.4.1 Loops
      • 1.4.2 For Loops
      • 1.4.3 While Loops
      • 1.4.4 Searching a String
    • 1.5 Functions in C++
      • 1.5.1 Functions in C++
      • 1.5.2 Defining and Calling Functions
      • 1.5.3 Passing by Reference vs Value
      • 1.5.4 Function Prototypes
  • 2. Going Beyond the Basics
    • 2.1 Vector Basics
      • 2.1.1 Vector Basics
      • 2.1.2 Creating and Accessing Vectors
      • 2.1.3 Inserting into a Vector
      • 2.1.4 Looping Through a Vector
    • 2.2 Function Default Values
      • 2.2.1 Function Default Values
      • 2.2.2 Default Values
      • 2.2.3 Default Values with a Prototype
      • 2.2.4 Example: Splitting a String
    • 2.3 Structs
      • 2.3.1 Structs
      • 2.3.2 Defining and Accessing Structs
      • 2.3.3 Using Structs: Line Length
    • 2.4 File Input/Output
      • 2.4.1 File Input/Output
      • 2.4.2 Reading in a File
      • 2.4.3 Processing a File
      • 2.4.4 Writing to a File
      • 2.4.5 Creating an Input Stream from a String
    • 2.5 Error Handling
      • 2.5.1 Error Handling
      • 2.5.2 Validating a Number
      • 2.5.3 Validating a Vector Index
      • 2.5.4 Throwing Other Values
  • 3. Libraries
    • 3.1 Header Files
      • 3.1.1 Header Files
      • 3.1.2 Header File
      • 3.1.3 Header and Implementation File
      • 3.1.4 Safer Header
    • 3.2 Using Libraries
      • 3.2.1 Using a Utilities Library
      • 3.2.2 The Util Library
  • 4. 2D Vectors, Stacks, and Queues
    • 4.1 2D Vectors
      • 4.1.1 2D Vectors
      • 4.1.2 The 2D Vector
      • 4.1.3 Creating a 2D Vector
    • 4.3 Stacks
      • 4.3.1 Stacks
      • 4.3.2 Basic Stack
      • 4.3.3 Stack Example: Reverse a String
    • 4.5 Queues
      • 4.5.1 Queues
      • 4.5.2 Basic Queues
      • 4.5.3 Queue Example: Next in Line
  • 5. Sets and Maps
    • 5.1 Pairs and Iterators
      • 5.1.1 Pairs and Iterators
      • 5.1.2 Pairs
      • 5.1.3 Iterators
    • 5.3 Sets
      • 5.3.1 Sets
      • 5.3.2 Basic Sets
      • 5.3.3 Iterating Through a Set
      • 5.3.4 Sets of Struct Values
    • 5.4 Maps
      • 5.4.1 Maps
      • 5.4.2 Map Basics
      • 5.4.3 Iterating Through a Map
      • 5.4.4 Updating Maps
  • 6. Recursion
    • 6.1 Functional Recursion
      • 6.1.1 Functional Recursion
      • 6.1.2 Basic Recursive Problem: Exponential
      • 6.1.3 Recursion Example: Reverse String
      • 6.1.4 Recursion Example: Make Sum
    • 6.2 Procedural Recursion
      • 6.2.1 Procedural Recursion
      • 6.2.2 Print Binary
      • 6.2.3 Print Permutations
      • 6.2.4 Depth vs Breadth Search
  • 7. Pointers, Linked Lists, and Graphs
    • 7.1 Pointers
      • 7.1.1 Pointers
      • 7.1.2 Assigning and Updating Pointers
      • 7.1.3 Pointers and Functions
      • 7.1.4 Pointers and Data Structures
    • 7.2 Linked Lists
      • 7.2.1 Linked Lists
      • 7.2.2 Basic Linked List
      • 7.2.3 Linked List and Recursion
      • 7.2.4 Example: Sorted Phone Book
      • 7.2.5 Doubly Linked List
    • 7.3 Graphs
      • 7.3.1 Graphs
      • 7.3.2 Basic Example: Breadth First Search
      • 7.3.3 Application: Connecting Cities
Powered by GitBook
On this page
  1. 7. Pointers, Linked Lists, and Graphs
  2. 7.2 Linked Lists

7.2.4 Example: Sorted Phone Book

Previous7.2.3 Linked List and RecursionNext7.2.5 Doubly Linked List

Last updated 3 years ago

In this example, you will see a twist on the linked list. The linked list is still the same with two data elements and a next record. The difference here is that instead of adding each new element to the front of the linked list, the element is going to be inserted in order.

Before getting to the code, take a look at the concept and how the nodes get linked together. In the first diagram, you can see two nodes that are linked in a standard linked list.

Phone Link List with 2 Nodes

Next, you want to insert a new node that comes between two existing nodes.

So how do you insert the node? Notice that you need to update the existing node A and the new node B, but the node that comes after does not need to be updated.

In this example, node A essentially is the list head and node B is the new element you need access to both of these nodes to insert the element.

Finding the correct place can be done recursively. You simple call the next element until you are no longer less than the element you want to insert:

void insertSorted(record *newRec, record * &head) {
    if (head == NULL || newRec->name < head->name) {
        // Found the place, now add it in
        newRec->next = head;
        head = newRec;
    }
    else {
        // continue down the list
        insertSorted(newRec, head->next);
    }
}

In this example, the first call would pass A as the head and B as the newRec. Since B is not less than A, the next call would be made with C as the head and B is still the newRec.

Since B is less than C, the new record next gets updated to the head (which is C), and the head is now updated from C to be B.

The head is pass-by-reference, so it recursively updates the next field of A to point to B.

Take some time with this example. What happens when the pass-by-reference is removed and why?

Phone Link List with 3rd Node not wired up
Phone Link List with 3rd Node inserted

Try This Example