📖
C++
  • 1. C++ Basics
    • 1.1 Input, Output, and Program Structure
      • 1.1.1 Welcome to Data Structures in C++
      • 1.1.2 Hello World
      • 1.1.3 Input and Output
      • 1.1.4 getline and cin
      • 1.1.5 Program Structure
    • 1.2 Basic Data Types
      • 1.2.1 Basic Data Types
        • 1.2.1.1 Differences between C++ and Java Data Types and Variables
      • 1.2.2 Strings and Characters
      • 1.2.3 Numbers
      • 1.2.4 Booleans
    • 1.3 Conditional Statements
      • 1.3.1 Conditional Statements
      • 1.3.2 Basic If/Else Statements
      • 1.3.3 Comparing Strings
      • 1.3.4 Logical Operators
    • 1.4 Loops
      • 1.4.1 Loops
      • 1.4.2 For Loops
      • 1.4.3 While Loops
      • 1.4.4 Searching a String
    • 1.5 Functions in C++
      • 1.5.1 Functions in C++
      • 1.5.2 Defining and Calling Functions
      • 1.5.3 Passing by Reference vs Value
      • 1.5.4 Function Prototypes
  • 2. Going Beyond the Basics
    • 2.1 Vector Basics
      • 2.1.1 Vector Basics
      • 2.1.2 Creating and Accessing Vectors
      • 2.1.3 Inserting into a Vector
      • 2.1.4 Looping Through a Vector
    • 2.2 Function Default Values
      • 2.2.1 Function Default Values
      • 2.2.2 Default Values
      • 2.2.3 Default Values with a Prototype
      • 2.2.4 Example: Splitting a String
    • 2.3 Structs
      • 2.3.1 Structs
      • 2.3.2 Defining and Accessing Structs
      • 2.3.3 Using Structs: Line Length
    • 2.4 File Input/Output
      • 2.4.1 File Input/Output
      • 2.4.2 Reading in a File
      • 2.4.3 Processing a File
      • 2.4.4 Writing to a File
      • 2.4.5 Creating an Input Stream from a String
    • 2.5 Error Handling
      • 2.5.1 Error Handling
      • 2.5.2 Validating a Number
      • 2.5.3 Validating a Vector Index
      • 2.5.4 Throwing Other Values
  • 3. Libraries
    • 3.1 Header Files
      • 3.1.1 Header Files
      • 3.1.2 Header File
      • 3.1.3 Header and Implementation File
      • 3.1.4 Safer Header
    • 3.2 Using Libraries
      • 3.2.1 Using a Utilities Library
      • 3.2.2 The Util Library
  • 4. 2D Vectors, Stacks, and Queues
    • 4.1 2D Vectors
      • 4.1.1 2D Vectors
      • 4.1.2 The 2D Vector
      • 4.1.3 Creating a 2D Vector
    • 4.3 Stacks
      • 4.3.1 Stacks
      • 4.3.2 Basic Stack
      • 4.3.3 Stack Example: Reverse a String
    • 4.5 Queues
      • 4.5.1 Queues
      • 4.5.2 Basic Queues
      • 4.5.3 Queue Example: Next in Line
  • 5. Sets and Maps
    • 5.1 Pairs and Iterators
      • 5.1.1 Pairs and Iterators
      • 5.1.2 Pairs
      • 5.1.3 Iterators
    • 5.3 Sets
      • 5.3.1 Sets
      • 5.3.2 Basic Sets
      • 5.3.3 Iterating Through a Set
      • 5.3.4 Sets of Struct Values
    • 5.4 Maps
      • 5.4.1 Maps
      • 5.4.2 Map Basics
      • 5.4.3 Iterating Through a Map
      • 5.4.4 Updating Maps
  • 6. Recursion
    • 6.1 Functional Recursion
      • 6.1.1 Functional Recursion
      • 6.1.2 Basic Recursive Problem: Exponential
      • 6.1.3 Recursion Example: Reverse String
      • 6.1.4 Recursion Example: Make Sum
    • 6.2 Procedural Recursion
      • 6.2.1 Procedural Recursion
      • 6.2.2 Print Binary
      • 6.2.3 Print Permutations
      • 6.2.4 Depth vs Breadth Search
  • 7. Pointers, Linked Lists, and Graphs
    • 7.1 Pointers
      • 7.1.1 Pointers
      • 7.1.2 Assigning and Updating Pointers
      • 7.1.3 Pointers and Functions
      • 7.1.4 Pointers and Data Structures
    • 7.2 Linked Lists
      • 7.2.1 Linked Lists
      • 7.2.2 Basic Linked List
      • 7.2.3 Linked List and Recursion
      • 7.2.4 Example: Sorted Phone Book
      • 7.2.5 Doubly Linked List
    • 7.3 Graphs
      • 7.3.1 Graphs
      • 7.3.2 Basic Example: Breadth First Search
      • 7.3.3 Application: Connecting Cities
Powered by GitBook
On this page
  • For Loop Traversal
  • Traversal Order
  • While Loop Traversal
  • Try This Example
  1. 5. Sets and Maps
  2. 5.3 Sets

5.3.3 Iterating Through a Set

Previous5.3.2 Basic SetsNext5.3.4 Sets of Struct Values

Last updated 3 years ago

As mentioned before, sets do not have an index value and are not stored in a sequential order. As a result, a standard for loop from zero to less than the length is not possible.

Instead, traversing a set is possible using an iterator as you saw in the last lesson.

For Loop Traversal

Like using an iterator for a vector, you can set up an iterator to iterate a set.

set<int> nums {2, 8, 4, 9};
for (set<int>::iterator itr = nums.begin(); itr != nums.end(); itr ++){
    cout << *itr << endl;
}

Notice in this example the iterator variable, itr, is declared and initialized inline. Each time through the loop, the iterator will point to a different value. You can then retrieve that value using the dereference operator, *.

Traversal Order

So what order will it print in? As mentioned earlier, sets are stored in a version of a binary tree. In a binary tree, new values are inserted in order.

Here is an example of a tree. The first member of the tree would be 4. The second member was either 2 or 9. Since the 9 is greater than the 4, it is inserted to the right. If the next value is 7, then it goes right since it is greater than 4, but then gets inserted to the left of 9 since it is less than 9.

If you were to insert a 3, where would it go? Since it is less than 4, it goes left at the top node, but greater than 2, so it gets inserted to the right of the 2.

When a set traversal is executed, it does what is called a depth-first traversal. This means it goes all the way to the bottom left of the tree, then works its way back to the right. In the above tree, this means the first value that will get printed is the 1. It then backs up and prints the two before exploring the nodes to the right on the two, in this case, 3.

If you follow this through, you will notice that the traversal is performed in sequential order.

While Loop Traversal

Just like other loops, a for loop can be converted into a while loop. Here is an example of a while loop traversal.

set<int> nums {4,2,9,7,1,5,8,3};

set<int>::iterator itr = nums.begin();

while(itr != nums.end()){
    cout << *itr << endl;
    itr ++;
}

Try This Example