📖
C++
  • 1. C++ Basics
    • 1.1 Input, Output, and Program Structure
      • 1.1.1 Welcome to Data Structures in C++
      • 1.1.2 Hello World
      • 1.1.3 Input and Output
      • 1.1.4 getline and cin
      • 1.1.5 Program Structure
    • 1.2 Basic Data Types
      • 1.2.1 Basic Data Types
        • 1.2.1.1 Differences between C++ and Java Data Types and Variables
      • 1.2.2 Strings and Characters
      • 1.2.3 Numbers
      • 1.2.4 Booleans
    • 1.3 Conditional Statements
      • 1.3.1 Conditional Statements
      • 1.3.2 Basic If/Else Statements
      • 1.3.3 Comparing Strings
      • 1.3.4 Logical Operators
    • 1.4 Loops
      • 1.4.1 Loops
      • 1.4.2 For Loops
      • 1.4.3 While Loops
      • 1.4.4 Searching a String
    • 1.5 Functions in C++
      • 1.5.1 Functions in C++
      • 1.5.2 Defining and Calling Functions
      • 1.5.3 Passing by Reference vs Value
      • 1.5.4 Function Prototypes
  • 2. Going Beyond the Basics
    • 2.1 Vector Basics
      • 2.1.1 Vector Basics
      • 2.1.2 Creating and Accessing Vectors
      • 2.1.3 Inserting into a Vector
      • 2.1.4 Looping Through a Vector
    • 2.2 Function Default Values
      • 2.2.1 Function Default Values
      • 2.2.2 Default Values
      • 2.2.3 Default Values with a Prototype
      • 2.2.4 Example: Splitting a String
    • 2.3 Structs
      • 2.3.1 Structs
      • 2.3.2 Defining and Accessing Structs
      • 2.3.3 Using Structs: Line Length
    • 2.4 File Input/Output
      • 2.4.1 File Input/Output
      • 2.4.2 Reading in a File
      • 2.4.3 Processing a File
      • 2.4.4 Writing to a File
      • 2.4.5 Creating an Input Stream from a String
    • 2.5 Error Handling
      • 2.5.1 Error Handling
      • 2.5.2 Validating a Number
      • 2.5.3 Validating a Vector Index
      • 2.5.4 Throwing Other Values
  • 3. Libraries
    • 3.1 Header Files
      • 3.1.1 Header Files
      • 3.1.2 Header File
      • 3.1.3 Header and Implementation File
      • 3.1.4 Safer Header
    • 3.2 Using Libraries
      • 3.2.1 Using a Utilities Library
      • 3.2.2 The Util Library
  • 4. 2D Vectors, Stacks, and Queues
    • 4.1 2D Vectors
      • 4.1.1 2D Vectors
      • 4.1.2 The 2D Vector
      • 4.1.3 Creating a 2D Vector
    • 4.3 Stacks
      • 4.3.1 Stacks
      • 4.3.2 Basic Stack
      • 4.3.3 Stack Example: Reverse a String
    • 4.5 Queues
      • 4.5.1 Queues
      • 4.5.2 Basic Queues
      • 4.5.3 Queue Example: Next in Line
  • 5. Sets and Maps
    • 5.1 Pairs and Iterators
      • 5.1.1 Pairs and Iterators
      • 5.1.2 Pairs
      • 5.1.3 Iterators
    • 5.3 Sets
      • 5.3.1 Sets
      • 5.3.2 Basic Sets
      • 5.3.3 Iterating Through a Set
      • 5.3.4 Sets of Struct Values
    • 5.4 Maps
      • 5.4.1 Maps
      • 5.4.2 Map Basics
      • 5.4.3 Iterating Through a Map
      • 5.4.4 Updating Maps
  • 6. Recursion
    • 6.1 Functional Recursion
      • 6.1.1 Functional Recursion
      • 6.1.2 Basic Recursive Problem: Exponential
      • 6.1.3 Recursion Example: Reverse String
      • 6.1.4 Recursion Example: Make Sum
    • 6.2 Procedural Recursion
      • 6.2.1 Procedural Recursion
      • 6.2.2 Print Binary
      • 6.2.3 Print Permutations
      • 6.2.4 Depth vs Breadth Search
  • 7. Pointers, Linked Lists, and Graphs
    • 7.1 Pointers
      • 7.1.1 Pointers
      • 7.1.2 Assigning and Updating Pointers
      • 7.1.3 Pointers and Functions
      • 7.1.4 Pointers and Data Structures
    • 7.2 Linked Lists
      • 7.2.1 Linked Lists
      • 7.2.2 Basic Linked List
      • 7.2.3 Linked List and Recursion
      • 7.2.4 Example: Sorted Phone Book
      • 7.2.5 Doubly Linked List
    • 7.3 Graphs
      • 7.3.1 Graphs
      • 7.3.2 Basic Example: Breadth First Search
      • 7.3.3 Application: Connecting Cities
Powered by GitBook
On this page
  • Functions That Take a Pointer
  • Functions That Take a Value
  • Additional Examples
  • Try This Example
  1. 7. Pointers, Linked Lists, and Graphs
  2. 7.1 Pointers

7.1.3 Pointers and Functions

As you saw in the previous lessons, the idea behind pointers is that they point to a location in the heap that holds a value. This means you need to track both the pointer value (representing a memory location) and the heap value associated with that pointer.

A traditional variable only has one value to keep track of, but now you need to be concerned with two different values. This is where errors and debugging can get confusing. In this example, you will look at how to handle both values and where to use them.

Functions That Take a Pointer

If a function takes a pointer type as a parameter, the only valid arguments will essentially be memory addresses. This means you either need to pass it another pointer value (not the dereferenced value), or the reference to a traditional variable using the & you saw earlier.

Take the following function header:

void add5(int *num);

If you have an integer pointer variable it will get passed directly:

int *num;
num = new int;
*num = 5;

add5(num);

Notice the type for num is a int pointer and the parameter takes an int pointer, so nothing else is needed.

Instead, if num is now a standard stack variable, you need to pass the reference to the variable using the &:

int num;
num = 5;

add5(&num);

In this case, the function will still update the value in the calling function without the need to return anything.

Functions That Take a Value

When a function takes an actual value as a parameter, you will need to either pass a value or pass the dereferenced pointer. Take this header:

void add5(int num);

Given a pointer, you can pass the value to it in this fashion:

int *num;
num = new int;
*num = 5;

add5(*num);

Notice that the value is sent by dereferencing the pointer.

Additional Examples

In the example below, you will notice a few other additional examples that do not need much explanation. Just like other variable types, pointers can be return values by adding the * after the return variable type and before the function name.

Additionally, you saw that functions can use pass-by-reference to pass a value to a function to be updated without a return value. In a similar way, you can pass the reference directly to a pointer parameter. Updates made to the pointer value in the function will then be reflected back in the calling function.

Previous7.1.2 Assigning and Updating PointersNext7.1.4 Pointers and Data Structures

Last updated 3 years ago

Try This Example